Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6373945 | Current Opinion in Insect Science | 2017 | 9 Pages |
Abstract
Scaling relationships play critical roles in defining biological shape, trait functionality, and species characteristics, yet the developmental basis of scaling and its evolution remain poorly resolved in most taxa. In the horned beetle genus Onthophagus, scaling relationships of most traits are largely comparable across many species, however, the morphology and scaling of horns, a recent evolutionary invention, has diversified dramatically, ranging from modestly to highly positively linear to more complex sigmoidal allometries. Through a series of transcriptomic screens and gene function assays, the doublesex, hedgehog, insulin, and serotonin signaling pathways have recently been implicated in the regulation of amplitude, slope, and threshold location of the highly sigmoidal horn allometry in O. taurus. These and other findings suggest that co-option of these pathways into the regulation of horn development may have been critical in the evolutionary transitions from isometric to positively allometric to sigmoidal allometries in Onthophagus, thereby contributing to the extraordinary diversification of one of the most species-rich genera in the animal kingdom.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Agronomy and Crop Science
Authors
Sofia Casasa, Daniel B Schwab, Armin P Moczek,