Article ID Journal Published Year Pages File Type
6374690 Field Crops Research 2015 11 Pages PDF
Abstract
This study investigated the effects of increased genetic diversity in winter wheat (Triticum aestivum L.), either from hybridization across genotypes or from physical mixing of lines, on grain yield, grain quality, and yield stability in different cropping environments. Sets of pure lines (no diversity), chosen for high yielding ability or high quality, were compared with line mixtures (intermediate level of diversity), and lines crossed with each other in composite cross populations (CCPn, high diversity). Additional populations containing male sterility genes (CCPms) to increase outcrossing rates were also tested. Grain yield, grain protein content, and protein yield were measured at four sites (two organically-managed and two conventionally-managed) over three years, using seed harvested locally in each preceding year. CCPn and mixtures out-yielded the mean of the parents by 2.4% and 3.6%, respectively. These yield differences were consistent across genetic backgrounds but partly inconsistent across cropping environments and years. Yield stability measured by environmental variance was higher in CCPn and CCPms than the mean of the parents. An index of yield reliability tended to be higher in CCPn, CCPms and mixtures than the mean of the parents. Lin and Binns' superiority values of yield and protein yield were consistently and significantly lower (i.e. better) in the CCPs than in the mean of the parents, but not different between CCPs and mixtures. However, CCPs showed greater early ground cover and plant height than mixtures. When compared with the (locally non-predictable) best-yielding pure line, CCPs and mixtures exhibited lower mean yield and somewhat lower yield reliability but comparable superiority values. Thus, establishing CCPs from smaller sets of high-performing parent lines might optimize their yielding ability. On the whole, the results demonstrate that using increased within-crop genetic diversity can produce wheat crops with improved yield stability and good yield reliability across variable and unpredictable cropping environments.
Related Topics
Life Sciences Agricultural and Biological Sciences Agronomy and Crop Science
Authors
, , , , , , , , ,