Article ID Journal Published Year Pages File Type
6382356 Aquatic Toxicology 2014 28 Pages PDF
Abstract
In the present study, the cellular and molecular mechanism of carbon tetrachloride (CCl4)-induced hepatotoxicity in fish was investigated by studying the effects of CCl4 on the oxidative stress, inflammatory response and hepatocyte apoptosis. Common carp were given an intraperitoneal injection of 30% CCl4 in arachis oil (0.5 ml/kg body weight). At 72 h post-injection, blood were collected to measure glutamate pyruvate transaminase (GPT), glutamate oxalate transaminase (GOT), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione (GSH), total antioxidant capacity (T-AOC) and malondialdehyde (MDA), liver samples were taken to analyze toll-like receptor 4 (TLR4), cytochrome P450 2E1 (CYP2E1) and gene expressions of inflammatory cytokines and nuclear factor-κB (NF-κB/cREL). Cell viability and apoptosis were analyzed after treatment of the primary hepatocytes with CCl4 at 8 mM. The results showed that CCl4 significantly increased the levels of GPT, GOT, MDA, TLR4 and CYP2E1, reduced the levels of SOD, GPx, CAT, GSH and T-AOC, and up-regulated the gene expressions of NF-κB/cREL and inflammatory cytokines including tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), IL-1β, IL-6 and IL-12. In vitro, CCl4 caused a dramatic loss in cell viability and induced hepatocyte apoptosis. Overall results suggest that oxidative stress lipid peroxidation, and TNF-α/NF-κB and TRL4/NF-κB signaling pathways play important roles in CCl4-induced hepatotoxicity in fish.
Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, , , , , , , ,