Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6382579 | Aquatic Toxicology | 2013 | 9 Pages |
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame-retardants (BFRs) that are widely used in industrial products and have posed potential risk on the coastal environment of the Laizhou Bay in China. They are of great concern due to their toxicities, such as hepatotoxicity, carcinogenecity, neurotoxicity, immunotoxicity and endocrine disrupting effects in animals. In this work, we focused on the gender-specific responses of BDE 47 in mussel Mytilus galloprovincialis using a combined proteomic and metabolomic approach. Metabolic responses indicated that BDE 47 mainly caused disturbance in energy metabolism in male mussel gills. For female mussel samples, disruption in both osmotic regulation and energy metabolism was found in terms of differential metabolic profiles. Proteomic responses revealed that BDE 47 induced cell apoptosis and reduced reactive oxygen species (ROS) production in both male and female mussels, disturbance in protein homeostasis in male mussels as well as disturbance in female mussel proteolysis based on the differential proteomic biomarkers. Overall, these results confirmed the gender-specific responses in mussels to BDE 47 exposures. This work demonstrated that an integrated metabolomic and proteomic approach could provide an important insight into the toxicological effects of environmental pollutant to organisms.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Aquatic Science
Authors
Chenglong Ji, Huifeng Wu, Lei Wei, Jianmin Zhao, Junbao Yu,