Article ID Journal Published Year Pages File Type
6538780 Applied Geography 2013 9 Pages PDF
Abstract
Land surface temperature (LST) variability results from diversity in urban surface materials over space and time such that locations with impervious urban cover experience higher temperature and larger temperature variation compared to non-impervious cover. There is growing awareness that warmer temperatures in urban locations negatively impact city residents by increasing heat related death and energy usage during heat waves. However, little previous work investigates the linkages between urban tree cover loss events related to invasive species eradication and urban heat trends. This paper examines the variation in LST using Landsat-5 Thematic Mapper (TM) thermal imagery in Worcester County, Massachusetts where over 30,000 trees were removed since 2008 to eradicate the invasive Asian Longhorned Beetle (ALB), most of which existed in urban residential areas. Throughout the study area a 10% loss in tree canopy cover caused a 0.7 °C increase in LST whereas a 10% increase in sub-canopy impervious surface area exposed due to tree loss caused 1.66 °C increase in LST. The Burncoat and Greendale neighborhoods in northern Worcester experienced a combined 48% tree cover loss from 2008 to 2010 due to ALB eradication and an average relative LST increase of 2.4 °C (range 0.6-4.1 °C). Given that areas with an increase in exposed impervious surface produce greater temperature increases than areas of tree loss, future tree replanting efforts may focus on locations that reduce exposed impervious surfaces.
Related Topics
Life Sciences Agricultural and Biological Sciences Forestry
Authors
, , , , , ,