Article ID Journal Published Year Pages File Type
6542114 Forest Ecology and Management 2016 10 Pages PDF
Abstract
We argue that the high fragmentation over the last decades have decreased the burned area. The slightly higher characteristic fire size in the managed area might be explained by the considerably lower fragmentation, counteracting fire suppression efforts. Fuel fragmentation is likely to decrease over the next decades due re-growth. Though a strong link between fire weather and burned area at the fine scale of this study could not be detected we expect that a decrease in fragmentation in combination with an increase in fire prone weather conditions (as expected for the future) might increase the risk of large fires in both areas. We suggest that future fire risk analysis should include an assessment of the effect of fuel fragmentation.
Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , ,