| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 6580280 | Chemical Engineering Journal | 2018 | 34 Pages |
Abstract
Nano-sized CuInS2 was evenly anchored on the thin film of reduced graphene oxide (rGO/CuInS2) by a simple one-step solvothermal method. The photocatalytic activity of rGO/CuInS2 was much higher than that of pure CuInS2, and was highly dependant on rGO amount with results revealing an optimal rGO content of 1â¯wt%. The 1% rGO/CuInS2 composite demonstrated the highest visible-light photocatalytic activity with almost 90% 2-nitrophenol removal, which was almost two times of pure CuInS2. The enhanced photocatalytic activity of rGO/CuInS2 is ascribed to that the ultrathin film structure of rGO endows rGO/CuInS2 composites with a large density of exposed active sites to reactants, short transport distances of photogenerated charges and the efficient separation of charge carriers. Of special significance is that 1% rGO/CuInS2 composite can effectively treat real pharmaceutical wastewater with 86.5% chemical oxygen demand (COD) removal efficiency in 11â¯h. Moreover, there was no obvious decrease in the photocatalytic activity of rGO/CuInS2 composites after four photocatalytic cycles. The high COD removal efficiency of pharmaceutical wastewater and reusability indicate the great potential of rGO/CuInS2 in environmental purification of organic pollutants.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Engineering (General)
Authors
Chunjuan Xie, Xiaoying Lu, Fang Deng, Xubiao Luo, Jiong Gao, Dionysios D. Dionysiou,
