Article ID Journal Published Year Pages File Type
6581055 Chemical Engineering Journal 2018 24 Pages PDF
Abstract
In this work, pulsed corona discharge technology (PCD) is studied as a potential method for antibiotic compounds abatement. Two antibiotics, amoxicillin and doxycycline, were chosen as test pharmaceutical compounds. The aim of the study was to investigate the transformation kinetics of binary solutions (water - single antibiotic compound) and ternary solutions (water - two antibiotic compounds) of the compounds and to optimize operational parameters for improved oxidation performance. Ternary solutions were investigated to obtain data on transformation kinetics when two competing pharmaceutical molecules are present in the solution. The experiments showed that reactions of doxycycline oxidation are always first order reactions. Reaction of amoxicillin oxidation has second order in the case of experiments with binary solution in alkaline medium. In other cases, it has first order. The transformation products formed were identified and monitored based on liquid chromatography mass spectrometer analysis. OH-amoxicillin, amoxicillin pencilloic acid, OH-doxycycline and 2-OH-doxycycline had the largest peaks areas. All studied compounds and all transformation products can be easily oxidized by PCD. Approximately 1 kWh/m3 and 0.5 kWh/m3 delivered energy is enough for oxidation of great part of amoxicillin and doxycycline respectively. Low frequency, 50 pps, and high (pH = 12) are preferable for oxidation of both antibiotics from the energy consumption point of view.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,