Article ID Journal Published Year Pages File Type
6581550 Chemical Engineering Journal 2016 11 Pages PDF
Abstract
Design and fabrication of low-cost, high efficient and robust three-dimensional (3D) microspherical materials for energy conversion and storage is of paramount importance. Here, we first reported a template-free and efficient hydrothermal method to synthesize quaternary AgPb10SbTe12 (AgPbmSbTem+2, m = 10) microspheres comprised of tiny nanoparticles driven by co-doping synergetic dipole-driven aggregation. Due to the effect of site blocking, Ag and Sb atoms tend to segregate into Ag-rich and Sb-rich regions, creating substantial inhomogeneity on the nanoscale. Theoretical calculations confirm the dipole-field-driven mechanism forming the microsphere structure. The inhomogeneous local structure has a high impact on the physical properties of the synthesized compounds: the local Ag/Sb ordering and multiple nanoscale interfaces result in the improved thermoelectric performance and cycling stability during the lithiation/delithiation process in Li ion battery compared to their binary or ternary compounds.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , ,