Article ID Journal Published Year Pages File Type
6686165 Applied Energy 2015 11 Pages PDF
Abstract
Numerical optimisation related to the estimation of kinetic parameters and model evaluation is playing an increasing role in combustion as well as in other areas of applied energy research. The present work aims at presenting the current probability-based approaches along applications to real problems of combustion chemical kinetics. The main methods related to model and parameter evaluation have been explicated. An in-house program for the systematic adjustment of kinetic parameters to experimental measurements has been described and numerically validated. The GRI (Gas research institute) mechanism (version 3.0) has been shown to initially lead to results which are greatly at variance with experimental data concerning the combustion of CH3 and C2H6. A thorough optimisation of all parameters has been performed with respect to these profiles. A considerable improvement could be reached and the new predictions appear to be compatible with the measurement uncertainties. It was also found that neither GRI 3.0 nor three other reaction mechanisms considered during the present work should be employed (without prior far-reaching optimisation) for numerical simulations of combustors and engines where CH3 and C2H6 play an important role. Overall, this study illustrates the link between optimisation methods and model evaluation in the field of combustion chemical kinetics.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,