Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6854142 | Engineering Applications of Artificial Intelligence | 2018 | 9 Pages |
Abstract
Neural approximations of the optimal stationary closed-loop control strategies for discounted infinite-horizon stochastic optimal control problems are investigated. It is shown that for a family of such problems, the minimal number of network parameters needed to achieve a desired accuracy of the approximate solution does not grow exponentially with the number of state variables. In such a way, neural-network approximation mitigates the so-called “curse of dimensionality”. The obtained theoretical results point out the potentialities of neural-network based approximation in the framework of sequential decision problems with continuous state, control, and disturbance spaces.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Giorgio Gnecco, Marcello Sanguineti,