Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6854697 | Expert Systems with Applications | 2018 | 40 Pages |
Abstract
The flow-shop scheduling problem with blocking constraints has received an increasing concern recently. However, multiple scheduling criteria are rarely considered simultaneously in most research. Therefore, in this paper, a multi-objective blocking flow-shop scheduling problem (MOBFSP) that minimizes the makespan and total tardiness simultaneously is investigated. To address this problem, a multi-objective discrete invasive weed optimization (MODIWO) algorithm is proposed. In the proposed MODIWO, a high-quality and diversified initial population is firstly constructed via two heuristics and varying weighed values. Then, a reference line-based reproduction and a sliding insertion-based spatial dispersal are developed to guide the global exploration and local exploitation of algorithm. Meanwhile, to enhance intensification search in local region, a self-adaption phase is introduced, which is implemented by a Pareto-based two stage local search with speedup mechanism. Furthermore, a new competitive exclusion strategy is also embedded to construct a superior population for the next generation. Finally, extensive computational experiments and comparisons with several recent state-of-the-art algorithms are carried out based on the well-known benchmark instances. Experimental results demonstrate the efficiency and effectiveness of the proposed MODIWO in solving the considered MOBFSP.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Shao Zhongshi, Pi Dechang, Shao Weishi,