Article ID Journal Published Year Pages File Type
6858932 International Journal of Approximate Reasoning 2016 21 Pages PDF
Abstract
In this paper we explore relaxations of (Williams) coherent and convex conditional previsions that form the families of n-coherent and n-convex conditional previsions, at the varying of n. We investigate which such previsions are the most general one may reasonably consider, suggesting (centered) 2-convex or, if positive homogeneity and conjugacy is needed, 2-coherent lower previsions. Basic properties of these previsions are studied. In particular, we prove that they satisfy the Generalised Bayes Rule and always have a 2-convex or, respectively, 2-coherent natural extension. The role of these extensions is analogous to that of the natural extension for coherent lower previsions. On the contrary, n-convex and n-coherent previsions with n≥3 either are convex or coherent themselves or have no extension of the same type on large enough sets. Among the uncertainty concepts that can be modelled by 2-convexity, we discuss generalisations of capacities and niveloids to a conditional framework and show that the well-known risk measure Value-at-Risk only guarantees to be centered 2-convex. In the final part, we determine the rationality requirements of 2-convexity and 2-coherence from a desirability perspective, emphasising how they weaken those of (Williams) coherence.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,