Article ID Journal Published Year Pages File Type
6859542 International Journal of Electrical Power & Energy Systems 2017 12 Pages PDF
Abstract
Voltage stability studies have been progressively gaining importance in the power engineering community. Predicting the saddle-node bifurcation point (SNBP) of a power system has become more critical as the power-system loading has increased in many places without a concomitant increase in transmission resources. Since a Newton-Raphson power-flow method is inherently unstable near the SNBP, adaptations such as continuation methods have been used as stabilizers. A new class of nonlinear equation solvers known as the holomorphic embedding method (HEM) is theoretically guaranteed to find the high-voltage solution to the power-flow problem, if one exists, up to the SNBP, provided sufficient precision is used and the conditions of Stahl's theorem are satisfied by the equation set. In this paper, four different HEM-based methods to estimate the saddle-node bifurcation point of a power system, are proposed and compared in terms of accuracy as well as computational efficiency.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,