Article ID Journal Published Year Pages File Type
6861255 Journal of Symbolic Computation 2015 29 Pages PDF
Abstract
The Bottom-Up class (BU) is, by definition, the set of linear systems for which every derivation can be replaced by a bottom-up derivation. Since membership to BU turns out to be undecidable, we are led to define more restricted classes: the classes SBU(k), k∈N, of Strongly Bottom-Up(k) systems for which we show that membership is decidable. We define the class of Strongly Bottom-Up systems by SBU=⋃k∈NSBU(k). We give a polynomial-time sufficient condition for a system to be in SBU. The class SBU contains (strictly) several classes of systems which were already known to inverse preserve recognizability: the inverse left-basic semi-Thue systems (viewed as unary term rewriting systems), the linear growing term rewriting systems, the inverse Linear-Finite-Path-Ordering systems.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,