Article ID Journal Published Year Pages File Type
6863721 Neurocomputing 2018 11 Pages PDF
Abstract
The possibilities of signal binding in recurrent neural networks with controlled elements are investigated. It is shown that a variety of dynamic space-time structures with new associative properties can be formed in the framework of such networks. A comparative analysis of the properties of linear, spiral single-level and multilevel structures of recurrent neural networks is carried out. Special attention is paid to the possibilities of controlling the associative-spatial interaction of signals in recurrent neural networks. The models of impulse neurons interaction are refined. The results of modeling of associative-spatial signal binding in two-layer recurrent neural networks with different logical structures of the layers are presented.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,