Article ID Journal Published Year Pages File Type
6864010 Neurocomputing 2018 29 Pages PDF
Abstract
This paper proposes distributed event-triggered algorithmic solutions to circle formation problems of first-order multi-agent systems, where the communication topology of networks is described by weight-unbalanced, strongly connected digraph. In particular, the controller updates and communications between neighboring agents considered here are event-triggered, depending on the specified threshold of a certain measurement error by contrast with the norm of a function with state-dependent. Sufficient conditions on both uniform and arbitrary circle formation are derived under which the resulting asynchronous network executions converge to some equilibrium point. Furthermore, we show that the Zeno behavior can be avoided under the proposed control laws. Numerical simulation results are given to illustrate the effectiveness of the proposed methods.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,