Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6864277 | Neurocomputing | 2018 | 21 Pages |
Abstract
Interval Type-2 fuzzy-neural-network (IT2FNN) has been widely used to model nonlinear systems. In current IT2FNN-based schemes, however, one of the main drawbacks is that the structure of IT2FNN is hard to be determined. In this paper, a self-organizing interval Type-2 fuzzy-neural-network (SOIT2FNN) is introduced via considering the structure adjustment and the parameters learning process simultaneously. Two main contributions of SOIT2FNN are summarized: Firstly, an intensity of information transmission algorithm, which can evaluate the independent component contributions of fuzzy rules, is introduced to optimize the structure of SOIT2FNN. Secondly, an adaptive second-order algorithm, which can obtain fast convergence, is developed to adjust the parameters of SOIT2FNN. To demonstrate the merits of SOIT2FNN, several benchmark nonlinear systems and a real world application are examined with comparisons against other existing methods. Moreover, a statistical analysis of the performance results indicates that the proposed SOIT2FNN performs better and is more suitable for modeling nonlinear systems than some existing methods.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Han Hong-Gui, Chen Zhi-Yuan, Liu Hong-Xu, Qiao Jun-Fei,