Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6864956 | Neurocomputing | 2018 | 8 Pages |
Abstract
Hashing-based methods have been widely applied in large scale image retrieval problem due to its high efficiency. In real world applications, it is difficult to require all images in a large database being labeled while unsupervised methods waste information from labeled images. Therefore, semi-supervised hashing methods are proposed to use partially labeled database to train hash functions using both the semantic and the unsupervised information. Multi-hashing methods achieve better precision-recall in comparison to single hashing method. However, current boosting-based multi-hashing methods do not improve performance after a small number of hash tables are created. Therefore, a bagging-boosting-based semi-supervised multi-hashing with query-adaptive re-ranking (BBSHR) is proposed in this paper. In the proposed method, an individual hash table of multi-hashing is trained using the boosting-based BSPLH, such that each hash bit corrects errors made by previous bits. Moreover, we propose a new semi-supervised weighting scheme for the query-adaptive re-ranking. Experimental results show that the proposed method yields better precision and recall rates for given numbers of hash tables and bits.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Wing W.Y. Ng, Xiancheng Zhou, Xing Tian, Xizhao Wang, Daniel S. Yeung,