Article ID Journal Published Year Pages File Type
6865224 Neurocomputing 2018 27 Pages PDF
Abstract
In this work, we present an animal behavior recognition, classification and monitoring system based on a wireless sensor network and a smart collar device, provided with inertial sensors and an embedded multi-layer perceptron-based feed-forward neural network, to classify the different gaits or behaviors based on the collected information. In similar works, classification mechanisms are implemented in a server (or base station). The main novelty of this work is the full implementation of a reconfigurable neural network embedded into the animal's collar, which allows a real-time behavior classification and enables its local storage in SD memory. Moreover, this approach reduces the amount of data transmitted to the base station (and its periodicity), achieving a significantly improving battery life. The system has been simulated and tested in a real scenario for three different horse gaits, using different heuristics and sensors to improve the accuracy of behavior recognition, achieving a maximum of 81%.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , , , , , ,