Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6865475 | Neurocomputing | 2016 | 11 Pages |
Abstract
Traditional discriminant analysis (DA) methods are usually not amenable to being studied only with a few or even single facial image per subject. The fundamental reason lies in the fact that the traditional DA approaches cannot fully reflect the variations of a query sample with illumination, occlusion and pose variations, especially in the case of small sample size. In this paper, we develop a multi-scale fuzzy sparse discriminant analysis using a local third-order tensor model to perform robust face classification. More specifically, we firstly introduced a local third-order tensor model of face images to exploit a set of multi-scale characteristics of the Ridgelet transform. Secondly, a set of Ridgelet transformed coefficients with respect to each block from a face image are respectively generated. We then merge all these coefficients to form a new representative vector for the image. Lastly, we evaluate the sparse similarity grade between each training sample and class by constructing a sparse similarity metric, and redesign the traditional discriminant criterion that contains considerable fuzzy sparse similarity grades to perform robust classification. Experimental results conducted on a set of well-known face databases demonstrate the merits of the proposed method, especially in the case of insufficient training samples.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Xiaoning Song, Zhen-Hua Feng, Xibei Yang, Xiaojun Wu, Jingyu Yang,