Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6866007 | Neurocomputing | 2015 | 9 Pages |
Abstract
This paper presents a novel constrained integration (CINT) method for solving initial boundary value partial differential equations (PDEs). The CINT method combines classical Galerkin methods with a constrained backpropogation training approach to obtain an artificial neural network representation of the PDE solution that approximately satisfies the boundary conditions at every integration step. The advantage of CINT over existing methods is that it is readily applicable to solving PDEs on irregular domains, and requires no special modification for domains with complex geometries. Furthermore, the CINT method provides a semi-analytical solution that is infinitely differentiable. In this paper the CINT method is demonstrated on two hyperbolic and one parabolic initial boundary value problems with a known analytical solutions that can be used for performance comparison. The numerical results show that, when compared to the most efficient finite element methods, the CINT method achieves significant improvements both in terms of computational time and accuracy.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Keith Rudd, Silvia Ferrari,