Article ID Journal Published Year Pages File Type
6866919 Neurocomputing 2012 10 Pages PDF
Abstract
Recent advances in microsystems technology led to a miniaturization of cuff-electrodes, which suggests these electrodes not just for long-term neuronal recordings in mammalians, but also in medium-sized insects. In this study we investigated the possibilities offered by cuff-electrodes for neuroethology using insects as a model organism. The implantation in the neck of a tropical bushcricket resulted in high quality extracellular nerve recordings of different units responding to various acoustic, vibratory, optical and mechanical stimuli. In addition, multi-unit nerve activity related to leg movements was recorded in insects walking on a trackball. A drawback of bi-polar nerve recordings obtained during tethered flight was overlay of nerve activity with large amplitude muscle potentials. Interestingly, cuff-electrode recordings were robust to withstand walking and flight activity so that good quality nerve recordings were possible even three days after electrode implantation. Recording multi-unit nerve activity in intact insects required an elaborate spike sorting algorithm in order to discriminate neuronal units responding to external stimuli from background activity. In future, a combination of miniaturized cuff-electrodes and light-weight amplifiers equipped with a wireless transmitter will allow the investigation of neuronal processes underlying natural behavior in freely moving insects. By this means cuff-electrodes may contribute to the development of realistic neuronal models simulating neuronal processes underlying natural insect behavior, such like mate choice and predator avoidance.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,