Article ID Journal Published Year Pages File Type
6867010 Neurocomputing 2012 10 Pages PDF
Abstract
Structural health monitoring aims to detect damages in man-made engineering structures by monitoring changes in their vibration response. Unsupervised learning algorithms can be used to obtain a model of the undamaged condition and detect which new samples of the structure are not in agreement with it. However, in real structures with a sensor network configuration, the number of candidate features usually becomes large. Therefore, complexity increases and it is necessary to perform feature selection and/or dimensionality reduction to achieve good detection accuracy. In this paper, we propose to exploit the three-way structure of data and apply a true multi-way data analysis algorithm: Parallel Factor Analysis. A simple model is obtained and used to train novelty detectors. The methods are tested both with real and simulated structural data to assess that the three-way analysis can be successfully used in structural health monitoring. Furthermore, the usefulness of the approach for feature selection is also analyzed.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,