Article ID Journal Published Year Pages File Type
6868125 Robotics and Computer-Integrated Manufacturing 2016 12 Pages PDF
Abstract
One of the key challenges in Additive Manufacturing is to develop a robust algorithm to slice CAD models into a set of layers which requires minimal support structures. This paper reports the concept and implementation of a new strategy for multi-direction slicing of CAD models represented in STL format. Differing from the existing multi-direction slicing approaches that are mainly focused on finding an optimal volume decomposition strategy, this study presents a decomposition-regrouping method. The CAD model is firstly decomposed into sub-volumes using a simple curvature-based volume decomposition method. Then a depth-tree structure based on topology information is introduced to merge them into ordered groups for slicing. In addition, a model simplification step is introduced before CAD model decomposition to significantly enhance the capability of the proposed multi-direction strategy. The proposed strategy is shown to be simple and efficient on various tests parts especially for geometries with large number of holes.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , , ,