Article ID Journal Published Year Pages File Type
6871529 Discrete Applied Mathematics 2018 13 Pages PDF
Abstract
The search of spanning trees with interesting disjunction properties has led to the introduction of edge-disjoint spanning trees, independent spanning trees and more recently completely independent spanning trees. We group together these notions by defining (i,j)-disjoint spanning trees, where i (j, respectively) is the number of vertices (edges, respectively) that are shared by more than one tree. We illustrate how (i,j)-disjoint spanning trees provide some nuances between the existence of disjoint connected dominating sets and completely independent spanning trees. We prove that determining if there exist two (i,j)-disjoint spanning trees in a graph G is NP-complete, for every two positive integers i and j. Moreover we prove that for square of graphs, k-connected interval graphs, complete graphs and several grids, there exist (i,j)-disjoint spanning trees for interesting values of i and j.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,