| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 6873058 | Future Generation Computer Systems | 2018 | 11 Pages |
Abstract
To address these problems, we propose new adaptive multi-level exclusive caching policies that can dynamically adjust replacement and placement decisions in response to changing access patterns. (1) First, to capture locality information in multi-level cache hierarchies, we propose a Reuse Distance based Adaptive Replacement Caching (ReDARC) algorithm that adopts reuse distance as the means of locality measure and adaptively balances between the Small Reuse Distance (SRD) set and Large Reuse Distance (LRD) set. (2) Second, to achieve exclusive caching and make global caching decisions, we propose an Adaptive Level-Aware Caching Algorithm (ALACA) that works collaboratively with ReDARC. The ALACA algorithm uses an adaptive probabilistic PUSH technique that allows lower caches to push blocks to higher caches and appropriately decide blocks' caching locations with the ReDARC algorithm. In this way, we achieve multi-level exclusive caching with significant cache performance improvement. Our trace-driven simulation experiments show that the policies we proposed achieve a reduction of the client average response time of 8 percent to 56 percent over other multi-level cache schemes.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics
Authors
Yuxia Cheng, Yang Xiang, Wenzhi Chen, Houcine Hassan, Abdulhameed Alelaiwi,
