Article ID Journal Published Year Pages File Type
6876197 Theoretical Computer Science 2014 16 Pages PDF
Abstract
We present a distance-agnostic approach to quantitative verification. Taking as input an unspecified distance on system traces, or executions, we develop a game-based framework which allows us to define a spectrum of different interesting system distances corresponding to the given trace distance. Thus we extend the classic linear-time-branching-time spectrum to a quantitative setting, parametrized by trace distance. We also prove a general transfer principle which allows us to transfer counterexamples from the qualitative to the quantitative setting, showing that all system distances are mutually topologically inequivalent.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,