Article ID Journal Published Year Pages File Type
6885972 Microprocessors and Microsystems 2018 11 Pages PDF
Abstract
In this paper we propose a novel approach to the synthesis of minimal-sized lattices, based on the decomposition of logic functions. Since the decomposition allows to obtain circuits with a smaller area, our idea is to decompose the Boolean functions according to generalizations of the classical Shannon decomposition, then generate the lattices for each component function, and finally implement the original function by a single composed lattice obtained by gluing together appropriately the lattices of the component functions. In particular we study the two decomposition schemes defining the bounded-level logic networks called P-circuits and EXOR-Projected Sums of Products (EP-SOPs). Experimental results show that about 34% of our benchmarks achieve a smaller area when implemented using the P-circuit decomposition for switching lattices, with an average gain of at least 25%, and about 27% of our benchmarks achieve a smaller area when implemented using the EP-SOP decomposition, with an average gain of at least 22%.
Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , , , , ,