Article ID Journal Published Year Pages File Type
6889388 Physical Communication 2016 14 Pages PDF
Abstract
A spectrum sharing system with primary and secondary nodes, each equipped with an arbitrary number of antennas, is investigated. Particularly, the outage performance of an underlay cognitive system is analytically studied, in the case when the end-to-end (e2e) communication is established via an intermediate relay node. To better enhance the e2e communication, successive interference cancellation (SIC) is adopted, which compensates for both the transmission power constraint and the presence of interference from primary nodes. Both the relay and secondary receiver perform unordered SIC to successively decode the multiple streams, whereas the decode-and-forward relaying protocol is used for the e2e communication. New closed-form expressions for the e2e outage performance of each transmitted stream are derived in terms of finite sum series of the Tricomi confluent hypergeometric function. In addition, simplified yet tight approximations for the asymptotic outage performance are obtained. Useful engineering insights are manifested, such as the diversity order of the considered system and the impact of interference from the primary nodes in conjunction with the constrained transmission power of the secondary nodes.
Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , ,