| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 6897812 | European Journal of Operational Research | 2013 | 8 Pages |
Abstract
We study a class of mixed-integer programs for solving linear programs with joint probabilistic constraints from random right-hand side vectors with finite distributions. We present greedy and dual heuristic algorithms that construct and solve a sequence of linear programs. We provide optimality gaps for our heuristic solutions via the linear programming relaxation of the extended mixed-integer formulation of Luedtke et al. (2010) [13] as well as via lower bounds produced by their cutting plane method. While we demonstrate through an extensive computational study the effectiveness and scalability of our heuristics, we also prove that the theoretical worst-case solution quality for these algorithms is arbitrarily far from optimal. Our computational study compares our heuristics against both the extended mixed-integer programming formulation and the cutting plane method of Luedtke et al. (2010) [13]. Our heuristics efficiently and consistently produce solutions with small optimality gaps, while for larger instances the extended formulation becomes intractable and the optimality gaps from the cutting plane method increase to over 5%.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science (General)
Authors
Daniel Reich,
