Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6915400 | Computer Methods in Applied Mechanics and Engineering | 2018 | 29 Pages |
Abstract
This paper marks the debut of a Galerkin isogeometric method for solving a Fredholm integral eigenvalue problem, enabling random field discretization by means of the Karhunen-Loève expansion. The method involves a Galerkin projection onto a finite-dimensional subspace of a Hilbert space, basis splines (B-splines) and non-uniform rational B-splines (NURBS) spanning the subspace, and standard methods of eigensolutions. Compared with the existing Galerkin methods, such as the finite-element and mesh-free methods, the NURBS-based isogeometric method upholds exact geometrical representation of the physical or computational domain and exploits regularity of basis functions delivering globally smooth eigensolutions. Therefore, the introduction of the isogeometric method for random field discretization is not only new; it also offers a few computational advantages over existing methods. In the big picture, the use of NURBS for random field discretization enriches the isogeometric paradigm. As a result, an uncertainty quantification pipeline of the future can be envisioned where geometric modeling, stress analysis, and stochastic simulation are all integrated using the same building blocks of NURBS. Three numerical examples, including a three-dimensional random field discretization problem, illustrate the accuracy and convergence properties of the isogeometric method for obtaining eigensolutions.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Sharif Rahman,