Article ID Journal Published Year Pages File Type
6921611 Computers in Biology and Medicine 2014 7 Pages PDF
Abstract
Diffusion tensor imaging (DTI) is a form of MRI that has been used extensively to map in vivo the white matter architecture of the human brain. It is also used for mapping subcortical nuclei because of its general sensitivity to tissue orientation differences and effects of iron accumulation on the diffusion signal. While DTI provides excellent spatial resolution in individual subjects, a challenge is visualizing consistent patterns of diffusion orientation across subjects. Here we present a simple method for averaging direction-encoded color anisotropy maps in standard space, explore this technique for visualizing the substantia nigra (SN) in relation to other midbrain structures, and show with signal-to-noise analysis that averaging improves the direction-encoded color signature. SN is distinguished on averaged maps from neighboring structures, including red nucleus (RN) and cerebral crus, and is proximal to SN location from existing brain atlases and volume of interest (VOI) delineation on individual scans using two blinded raters.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , ,