Article ID Journal Published Year Pages File Type
6924118 Computers & Structures 2018 13 Pages PDF
Abstract
This paper presents an evolutionary approach for the Robust Topology Optimization (RTO) of continuum structures under loading and material uncertainties. The method is based on an optimality criterion obtained from the stochastic linear elasticity problem in its weak form. The smooth structural topology is determined implicitly by an iso-value of the optimality criterion field. This iso-value is updated using an iterative approach to reach the solution of the RTO problem. The proposal permits to model the uncertainty using random variables with different probability distributions as well as random fields. The computational burden, due to the high dimension of the random field approximation, is efficiently addressed using anisotropic sparse grid stochastic collocation methods. The numerical results show the ability of the proposal to provide smooth and clearly defined structural boundaries. Such results also show that the method provides structural designs satisfying a trade-off between conflicting objectives in the RTO problem.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,