Article ID Journal Published Year Pages File Type
6925303 Finite Elements in Analysis and Design 2018 11 Pages PDF
Abstract
This paper presents a new Lagrangian particle method for the simulation of manufacturing processes involving large strain and material failure. The starting point is to introduce some stabilization terms as a means of circumventing the onerous zero-energy deformation in the Lagrangian particle method. The stabilization terms are derived from the approximate strain vector by the combination of a constant and strain derivatives, which leads to a multiple nodal stress points algorithm for stabilization. The resultant stabilized Lagrangian particle formulation is a non-residual type that renders no artificial control parameters in the stabilization procedure. Subsequently, the stabilized formulation is supplemented by an adaptive anisotropic Lagrangian kernel and a bond-based material failure criterion to sufficiently prevent the tension instability and excessive straining problems. Several numerical examples are presented to examine the effectiveness and accuracy of the proposed method for modeling large strain and material failure in manufacturing processes.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,