Article ID Journal Published Year Pages File Type
6928722 Journal of Computational Physics 2018 15 Pages PDF
Abstract
We consider the problem of reconstructing unknown inclusions inside a thermal conductor from boundary measurements, which arises from active thermography and is formulated as an inverse boundary value problem for the heat equation. In our previous works, we proposed a sampling-type method for reconstructing the boundary of the unknown inclusion and gave its rigorous mathematical justification. In this paper, we continue our previous works and provide a further investigation of the reconstruction method from both the theoretical and numerical points of view. First, we analyze the solvability of the Neumann-to-Dirichlet map gap equation and establish a relation of its solution to the Green function of an interior transmission problem for the inclusion. This naturally provides a way of computing this Green function from the Neumann-to-Dirichlet map. Our new findings reveal the essence of the reconstruction method. A convergence result for noisy measurement data is also proved. Second, based on the heat layer potential argument, we perform a numerical implementation of the reconstruction method for the homogeneous inclusion case. Numerical results are presented to show the efficiency and stability of the proposed method.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,