Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6929493 | Journal of Computational Physics | 2016 | 15 Pages |
Abstract
A fast accurate approximation method with multigrid solver is proposed to solve a two-dimensional fractional sub-diffusion equation. Using the finite difference discretization of fractional time derivative, a block lower triangular Toeplitz matrix is obtained where each main diagonal block contains a two-dimensional matrix for the Laplacian operator. Our idea is to make use of the block ϵ-circulant approximation via fast Fourier transforms, so that the resulting task is to solve a block diagonal system, where each diagonal block matrix is the sum of a complex scalar times the identity matrix and a Laplacian matrix. We show that the accuracy of the approximation scheme is of O(ϵ). Because of the special diagonal block structure, we employ the multigrid method to solve the resulting linear systems. The convergence of the multigrid method is studied. Numerical examples are presented to illustrate the accuracy of the proposed approximation scheme and the efficiency of the proposed solver.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Xue-lei Lin, Xin Lu, Micheal K. Ng, Hai-Wei Sun,