Article ID Journal Published Year Pages File Type
6931527 Journal of Computational Physics 2015 24 Pages PDF
Abstract
A new numerical method is presented for solving the shallow water equations on a rotating sphere using quasi-uniform polygonal meshes. The method uses special families of finite element function spaces to mimic key mathematical properties of the continuous equations and thereby capture several desirable physical properties related to balance and conservation. The method relies on two novel features. The first is the use of compound finite elements to provide suitable finite element spaces on general polygonal meshes. The second is the use of dual finite element spaces on the dual of the original mesh, along with suitably defined discrete Hodge star operators to map between the primal and dual meshes, enabling the use of a finite volume scheme on the dual mesh to compute potential vorticity fluxes. The resulting method has the same mimetic properties as a finite volume method presented previously, but is more accurate on a number of standard test cases.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,