Article ID Journal Published Year Pages File Type
6933239 Journal of Computational Physics 2014 18 Pages PDF
Abstract
This paper is concerned with the study of pattern formation for an inhomogeneous Brusselator model with cross-diffusion, modeling an autocatalytic chemical reaction taking place in a three-dimensional domain. For the spatial discretization of the problem we develop a novel finite volume element (FVE) method associated to a piecewise linear finite element approximation of the cross-diffusion system. We study the main properties of the unique equilibrium of the related dynamical system. A rigorous linear stability analysis around the spatially homogeneous steady state is provided and we address in detail the formation of Turing patterns driven by the cross-diffusion effect. In addition we focus on the spatial accuracy of the FVE method, and a series of numerical simulations confirm the expected behavior of the solutions. In particular we show that, depending on the spatial dimension, the magnitude of the cross-diffusion influences the selection of spatial patterns.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,