Article ID Journal Published Year Pages File Type
6933681 Journal of Computational Physics 2013 15 Pages PDF
Abstract
Homotopy continuation is an efficient tool for solving polynomial systems. Its efficiency relies on utilizing adaptive stepsize and adaptive precision path tracking, and endgames. In this article, we apply homotopy continuation to solve steady state problems of hyperbolic conservation laws. A third-order accurate finite difference weighted essentially non-oscillatory (WENO) scheme with Lax-Friedrichs flux splitting is utilized to derive the difference equation. This new approach is free of the CFL condition constraint. Extensive numerical examples in both scalar and system test problems in one and two dimensions demonstrate the efficiency and robustness of the new method.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , , ,