Article ID Journal Published Year Pages File Type
6944914 Microelectronics Journal 2018 14 Pages PDF
Abstract
Existing secure adiabatic logic designs use charge sharing inputs to deliver input independent energy dissipation and suffer from non-adiabatic losses (NAL) during the evaluation phase of the power-clock. However, using additional inputs present the overhead of generation, scheduling, and routing of the signals. Thus, we present “Without Charge-Sharing Quasi-Adiabatic Logic”, WCS-QuAL which doesn't require any charge sharing inputs and completely removes the NAL. The pre-layout and post-layout simulation results of the gates show that WCS-QuAL exhibits the lowest Normalized Energy Deviation (NED) and Normalized Standard Deviation (NSD) against all process corner variations at frequencies ranging from 1 MHz to 100 MHz. It also shows least variations in average energy dissipation at all five process corners. The simulation results show that the 8-bit Montgomery multiplier using WCS-QuAL exhibits the least value of NED and NSD at all the simulated frequencies and against power-supply scaling and dissipates the lowest energy at frequencies ranging from 20 MHz to 100 MHz.
Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, , ,