Article ID Journal Published Year Pages File Type
6945474 Microelectronics Reliability 2018 12 Pages PDF
Abstract
Otherwise attractive substrate materials for printed electronics may have such surface characteristics that make patterning challenging. This article focuses on the printability and performance characterization of conductive patterns on a low surface energy substrate. Surface characteristics of a hydrophobic polyphenylene ether (PPE) substrate and the effects of surface modification using chemical and physical pre-treatments were studied. In addition, silver ink performance and its reliability on this substrate were evaluated. The surface was characterized by surface energy measurements and surface profile analysis. Screen-printed test patterns were characterized to evaluate print quality and electrical and mechanical performance. A further inspection of substrate-ink interactions was conducted using environmental reliability tests. It was observed that ink adhesion could be significantly promoted by choosing a suitable surface pre-treatment method. Low sheet resistances were obtained, and thus, suitable inks for further characterization were found. In addition, it was observed that environmental stress has a significant impact on ink-substrate interactions.
Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, ,