Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6949711 | ISPRS Journal of Photogrammetry and Remote Sensing | 2014 | 15 Pages |
Abstract
Meanwhile, we compared the performances of five classifiers. The rule-based method provides the highest overall accuracy at 97.0%. The rule-based method provides over 99.0% accuracy for the ground and roof classes, and a minimum accuracy of 90.0% for the water, vegetation, wall and undefined object classes. Notably, the accuracy of the roof element class is only 70% with the rule-based method, or even lower with other classifiers. Most roof elements have been assigned to the roof class, as shown in the confusion matrix. These erroneous assignments are not fatal errors because both a roof and a roof element are part of a building. In addition, a new feature which indicates the average point space within the planar segment is generalised to distinguish vegetation from other classes. Its performance is compared to the percentage of points with multiple pulse count in planar segments. Using the feature computed with only average point space, the detection rate of vegetation in a rule-based classifier is 85.5%, which is 6% lower than that with pulse count information.
Related Topics
Physical Sciences and Engineering
Computer Science
Information Systems
Authors
S. Xu, G. Vosselman, S. Oude Elberink,