Article ID Journal Published Year Pages File Type
6961387 Advances in Engineering Software 2018 17 Pages PDF
Abstract
A study on how a mathematical material modeling approach named rheological-dynamical analogy (RDA) can be used to predict the quasi static and dynamic inelastic buckling and failure of structures is presented in this paper. An analysis of the uniformly compressed folded-plate structures, made of isotropic materials, is carried out. Two sources of non-linearity, one involving geometrical non-linearity due to large deflection, and the other involving material non-linearity due to inelastic behavior, are analyzed by implementing a full-energy finite strip method (FSM). The material non-linearity is analyzed using the RDA. A very basic continuum damage model with one damage parameter is implemented in conjunction with a mathematical material modeling approach in order to address stiffness reduction due to inelastic behavior. According to the analogy, a very complicated material non-linear problem in the inelastic range of strains is solved as a simple linear dynamic one. The orthotropic constitutive relations are derived and modulus iterative method for the solution of nonlinear equations is presented.
Related Topics
Physical Sciences and Engineering Computer Science Software
Authors
, , ,