Article ID Journal Published Year Pages File Type
6962427 Environmental Modelling & Software 2016 16 Pages PDF
Abstract
Wildfires have significant environmental and economic effects. Since containment of wildfires involves deciding under tight time constraints, there is an increasing need for accurate yet computationally efficient wildfire prediction models. We consider the problem of finding the fire traversal time across a landscape considering wind speed as an unpredictable phenomenon. The landscape is represented as a graph network and fire propagation time is modeled as the Stochastic Shortest Path problem. Monte-Carlo simulation is utilized to determine the fire travel-time distribution. A network size reduction methodology is introduced to quicken the simulation time by eliminating the unimportant parts of the network. This methodology is implemented in Java to simulate the wildfire propagation on a study area located in Massachusetts. This method shows the capability of substantially reducing the simulation time without affecting prediction accuracy, enabling the algorithm to serve as a fast and reliable tool for fire prediction.
Related Topics
Physical Sciences and Engineering Computer Science Software
Authors
, , ,