Article ID Journal Published Year Pages File Type
6963800 Environmental Modelling & Software 2014 25 Pages PDF
Abstract
Multi-layer perceptron artificial neural networks are used extensively in hydrological and water resources modelling. However, a significant limitation with their application is that it is difficult to determine the optimal model structure. General regression neural networks (GRNNs) overcome this limitation, as their model structure is fixed. However, there has been limited investigation into the best way to estimate the parameters of GRNNs within water resources applications. In order to address this shortcoming, the performance of nine different estimation methods for the GRNN smoothing parameter is assessed in terms of accuracy and computational efficiency for a number of synthetic and measured data sets with distinct properties. Of these methods, five are based on bandwidth estimators used in kernel density estimation, and four are based on single and multivariable calibration strategies. In total, 5674 GRNN models are developed and preliminary guidelines for the selection of GRNN parameter estimation methods are provided and tested.
Related Topics
Physical Sciences and Engineering Computer Science Software
Authors
, , ,