Article ID Journal Published Year Pages File Type
699881 Control Engineering Practice 2015 8 Pages PDF
Abstract

Model-based control design requires a careful specification of performance and robustness requirements. In typical norm-based control designs, performance and robustness requirements are specified in a scalar optimization criterion, even for complex multivariable systems. This paper aims to develop a novel approach for the formulation of this optimization criterion for multivariable motion systems that exhibit spatio-temporal deformations. To achieve this, characteristics of the underlying system are exploited to design multivariable weighting functions. In contrast to pre-existing approaches, which typically lead to diagonal weighting functions, the proposed approach enables the design of non-diagonal weighting functions. Extensive experimental results confirm that the proposed procedure can significantly improve the performance of an industrial motion system compared to earlier approaches.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , , , ,