Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
699890 | Control Engineering Practice | 2010 | 10 Pages |
A systematic approach to parameter-dependent control synthesis of a high-speed supercavitation vehicle (HSSV) is presented. The aim of the control design is to provide robust reference tracking across a large flight envelope, while directly accounting for the interaction of liquid and gas phases with the vehicle. A nonlinear dynamic HSSV model is presented and discussed relative to the actual vehicle. A linear, parameter-varying (LPV) controller is synthesized for angle rate tracking in the presence of model uncertainty. The control design takes advantage of coupling in the governing equations to achieve improved performance. Multiple LPV controllers synthesized for smaller overlapping regions of the parameter space are blended together, providing a single controller for the full flight envelope. Time-domain simulations implemented on high-fidelity simulations, provide insight into the performance and robustness of the proposed scheme.