Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7724803 | Journal of Power Sources | 2018 | 9 Pages |
Abstract
A poly(vinylidene difluoride-co-hexafluoropropylene) (PVdF-HFP)-based gel polymer electrolyte (GPE) containing propylene carbonate (PC)-based liquid electrolyte was developed to enhance the safety performance of LiNi0.5Mn0.3Co0.2O2/graphite (NMC532/graphite) lithium ion batteries. The PC-based liquid electrolyte (PEV-LE) consists of 1â¯molâ¯Lâ1 LiPF6 as lithium salt, PC as the main solvent and ethylene sulfite (ES, 2% by weight) as well as vinylene carbonate (VC, 2% by weight) as solid electrolyte interphase (SEI) forming additives. Electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) revealed that the combination of ES and VC additives facilitates the formation of effective interphases at the respective electrolyte/electrode interfaces, thus contributing to a remarkable cycle life of NMC532/graphite cell comprising PEV-GPE. Flash point measurements and differential scanning calorimetry (DSC) confirmed significantly improved safety performance of PEV compared to the state-of-the-art electrolyte. PEV-GPE is a promising alternative to state-of-the-art electrolyte as it shows extended cycle life and enhanced thermal stability in NMC532/graphite lithium ion cells.
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Hao Jia, Hitoshi Onishi, Natascha von Aspern, Uta Rodehorst, Katharina Rudolf, Bastian Billmann, Ralf Wagner, Martin Winter, Isidora Cekic-Laskovic,