Article ID Journal Published Year Pages File Type
7725220 Journal of Power Sources 2018 6 Pages PDF
Abstract
Solid electrolyte with stable and fast Na+ ionic conductivity is of central importance in the development of all-solid-state sodium batteries. Here we present a novel Na+ conductor based on complex hydrides with composition of Na3NH2B12H12. It exhibits remarkable thermal stability up to 593 K and excellent electrochemical stable window up to 10 V (vs. Na+/Na). It demonstrates a high Na+ conductivity of 1.0 × 10−4 S cm-1 at a temperature of 372 K, which is much higher than those of its precursors NaNH2 and Na2B12H12. All-solid-state Na-ion batteries were constructed by employing the obtained Na3NH2B12H12 as electrolyte, TiS2 as cathode and sodium foil as anode, which can reversibly discharge/charge for over 200 cycles with more than 50% capacity retention at temperature of 353 K and a rate of 0.1 C. This work opens the gate to develop advanced solid electrolytes via combination of metal amides with closo borates.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , , , , , , , ,